philm-iOS-wiki
  • 介绍
  • 网络层
    • 说明
  • UI
    • 说明
    • 在ios7以前使用ColorSpace的坑
    • UITableView偏移异常问题
    • drawRect时单独设置文字阴影无效
    • Xcode9下相册访问权限问题
    • 避免同时点击多个Button
    • scroll上的button延迟响应问题
    • uibutton触发边界事件
    • ios 11 上tableview 改动
    • YYImage 显示指定区域的图片
  • 数据持久化
    • 说明
  • 其它
    • 取消延迟执行之坑
    • NSString 转换 float 的精度问题
  • 每周阅读
    • 目录
    • 深入思考NSNotification
    • gitBook使用小助手
    • iOS App签名的原理
    • 响应链
    • iOS10跳转系统到设置页
    • SDWebImage下载高清图内存问题
    • iOS圆角避免离屏渲染
    • 常用的延时调用
    • iOS 神经网络
    • SDWebImage缓存策略
    • 3Dtouch
    • 为什么 Objective-C 对象存储在堆上而不是栈上
    • 深入浅出理解视频编码H264结构
    • CATextLayer学习
    • cocoaPods
    • 任意网站支持RSS
    • Metal简介
    • 动态更改icon
    • CAReplicatorLayer
    • 增加点击间隔
    • 勒索病毒当道的时代
    • iOS常用宏定义
    • Metal实现YUV转RGB渲染视频
    • 获取当前下载的app及下载进度
    • OpenGL ES 三种类型修饰 uniform attribute varying
    • 技术部门引入OKR
    • 基于runloop的线程保活、销毁与通信
    • 深入理解哈希表
    • TOLL-FREE BRIDGING 和 UNMANAGED
    • 开发者能拿到的标识符
    • Swift自定义LOG
    • 系统通知整理
    • iOS 中的 imageIO 与 image 解码
    • CGImageRef基本介绍及方法说明
    • Swift 3.0 语法
    • webview加载部分网页
    • 在CAAnimation中暂停动画
    • 把代码迁移到协调器上
    • ios11API更新整理
    • 非越狱iOS设备的远程控制实现原理
    • 关于本地化
    • swift命名空间
    • CoreML与coremltools体验
    • 力学动画
    • Swift 4官方文档中文版: The Basic(上)
    • swift 中的KVO用法
    • GPUImage的图像形变设计(简单形变部分)
    • iOS响应式架构
    • 移动端图片上传旋转、压缩的解决方案
    • AVFoundation使用指南AVAssert使用
    • 过渡动画
    • 谈谈 MVX 中的 Model
    • AVFoundation编程-AVPlayer使用
    • GPUImage的图像形变设计(复杂形变部分)
    • What's New in LLVM 9
    • ios的事件机制
    • GPUImage源码解读(一)
    • GPUImage源码解读(二)
    • iOS 启动优化
    • 模块化 Swift 中的状态
    • swift中的let和var背后的编程模式
    • Swift Runtime动态性分析
    • RAC下的响应式编程
    • GPUImage源码解读(三)
    • 如何准确判断webView是否加载完成
    • NSObject的+load和+initialize详解
    • ios8以后设置启动图
    • GPUImage源码解读(四)
    • Swift自动闭包
    • IOS11新特性
    • GPUImage源码解读(五)
    • 理解 OC 内部的消息调用、消息转发、类和对象
    • 修饰符
    • IOS 切面统计事件解耦
    • GPUImage源码解读(六)
    • CoreImage介绍
    • 影响Core Animation性能的原因
    • Instruments中的动画工具选项介绍
    • GPUImage源码解读(七)
    • Xcode 7新的特性Lightweight Generics 轻量级泛型与__kindof修饰符
    • GPUImage源码解读(八)
    • Core Image之自定 Filter
    • iOS通用链接
    • 谈nonatomic非线程安全问题
    • 深拷贝与浅拷贝
    • CIKernel 介绍
    • iOS11适配
    • GPUImage源码解读(九)
    • CVPixelBufferCreate使用的坑
    • ios一窥并发底层
    • ARKit进阶:物理世界
    • ARKit的工作原理及流程介绍
    • UI线程卡顿监控
    • FBKVOController使用
    • GPUImage源码解读(十)
    • WKWebView在ios11崩溃问题解决方法
    • 微信iOS SQLite源码优化实践
    • HEIF 和 HEVC 研究
    • 谈谈 iOS 中图片的解压缩
    • 提升 iOS 开发效率! Xcode 9 内置模拟器的9个技巧
    • ObjC和JavaScript的交互,在恰当的时机注入对象
    • iOS数据保护
    • iOS11中网络层的一些变化(Session707&709脱水版)
    • GPUImage源码解读(十一)
    • 一种避免 iOS 内存碎片的方法
    • pods的原理
    • GPUImage源码解读(十二)
    • GPUImage源码解读(十三)
    • iOS 11 Layout的新特性
    • iOS应用瘦身方法思路整理
    • GPUImage源码解读(十四)
    • CAEmitterLayer属性介绍
    • 浅析移动蜂窝网络的特点及其省电方案
    • 如何在 table view 中添加 3D Touch Peek & Pop 功能
    • iOS中锁的介绍与使用
    • NSLog效率低下的原因及尝试lldb断点打印Log
    • GPUImage源码解读(十五)
    • GPUImage源码解读(十六)
    • CADisplayLink
    • GPUImage源码解读(十七)
    • CADisplayLink
    • 老生常谈category增加属性的几种操作
    • 30行代码演示dispatch_once死锁
    • GPUImage源码解读(十八)
    • YYImage设计思路
    • GPUImage源码解读(十九)
    • 深入理解Tagged Pointer
    • iOS 11:WKWebView内容过滤规则详解
    • Swift语法对编译速度的影响
    • GPUImage源码解读(二十)
    • GPUImage源码解读(二十一)
    • iOS App间常用的五种通信方式
    • YYCache深入学习
    • 冲顶大会插件
    • iOS高性能图片架构与设计
    • YUV颜色编码解析
    • iOS传感器:App前后台切换后,获取敏感信息使用touch ID进行校验
    • GPUImage源码解读(二十二)
    • GPUImage源码解读(二十三)
    • 从零开始的机器学习 - Machine Learning(一)
    • 从零开始的机器学习 - Machine Learning(二)
    • GPUImage源码解读(二十四)
    • Objective-C消息转发机制
    • iOS 程序 main 函数之前发生了什么
    • MMKV--基于 mmap 的 iOS 高性能通用 key-value 组件
    • Objective-C 消息发送与转发机制原理
    • 谈Objective-C block的实现
    • GPUImage源码解读(二十五)
    • podfile语法
    • 轻量级低风险 iOS 热更新方案
    • 使用objection来模块化开发iOS项目
    • swift 中delegate的使用注意
    • 使用appledoc自动生成api文档
    • UITextChecker的使用
    • ARKit 如何给SCNNode贴Gif图片
    • Unity与iOS平台交互和原生插件开发
    • SceneKit编程珠玑
Powered by GitBook
On this page
  1. 每周阅读

TOLL-FREE BRIDGING 和 UNMANAGED

有经验的读者看到这章的标题就能知道我们要谈论的是 Core Foundation。在 Swift 中对于 Core Foundation (以及其他一系列 Core 开头的框架) 在内存管理进行了一系列简化,大大降低了与这些 Core Foundation (以下简称 CF ) API 打交道的复杂程度。

首先值得一提的是对于 Cocoa 中 Toll-Free Bridging 的处理。Cocoa 框架中的大部分 NS 开头的类其实在 CF 中都有对应的类型存在,可以说 NS 只是对 CF 在更高层面的一个封装。比如 NSURL 和它在 CF 中的 CFURLRef 内存结构其实是同样的,而 NSString 则对应着 CFStringRef。

因为在 Objective-C 中 ARC 负责的只是 NSObject 的自动引用计数,因此对于 CF 对象无法进行内存管理。我们在把对象在 NS 和 CF 之间进行转换时,需要向编译器说明是否需要转移内存的管理权。对于不涉及到内存管理转换的情况,在 Objective-C 中我们就直接在转换的时候加上 __bridge 来进行说明,表示内存管理权不变。例如有一个 API 需要 CFURLRef,而我们有一个 ARC 管理的 NSURL 对象的话,这样来完成类型转换:

NSURL *fileURL = [NSURL URLWithString:@"SomeURL"];
SystemSoundID theSoundID;
//OSStatus AudioServicesCreateSystemSoundID(CFURLRef inFileURL,
//                             SystemSoundID *outSystemSoundID);
OSStatus error = AudioServicesCreateSystemSoundID(
        (__bridge CFURLRef)fileURL,
        &theSoundID);

而在 Swift 中,这样的转换可以直接省掉了,上面的代码可以写为下面的形式,简单了许多:

import AudioToolbox

let fileURL = NSURL(string: "SomeURL")
var theSoundID: SystemSoundID = 0

//AudioServicesCreateSystemSoundID(inFileURL: CFURL,
//        _ outSystemSoundID: UnsafeMutablePointer<SystemSoundID>) -> OSStatus
AudioServicesCreateSystemSoundID(fileURL!, &theSoundID)

细心的读者可能会发现在 Objective-C 中类型的名字是 CFURLRef,而到了 Swift 里成了 CFURL。CFURLRef 在 Swift 中是被 typealias 到 CFURL 上的,其实不仅是 URL,其他的各类 CF 类型都进行了类似的处理。这主要是为了减少 API 的迷惑:现在这些 CF 类型的行为更接近于 ARC 管理下的对象,因此去掉 Ref 更能表现出这一特性。

另外在 Objective-C 时代 ARC 不能处理的一个问题是 CF 类型的创建和释放。虽然不能自动化,但是遵循命名规则来处理的话还是比较简单的:对于 CF 系的 API,如果 API 的名字中含有 Create,Copy 或者 Retain 的话,在使用完成后,我们需要调用 CFRelease 来进行释放。

不过 Swift 中这条规则已成明日黄花。既然我们有了明确的规则,那为什么还要一次一次不厌其烦地手动去写 Release 呢?基于这种想法,Swift 中我们不再需要显式地去释放带有这些关键字的内容了 (事实上,含有 CFRelease 的代码甚至无法通过编译)。也就是说,CF 现在也在 ARC 的管辖范围之内了。其实背后的机理一点都不复杂,只不过在合适的地方加上了像 CF_RETURNS_RETAINED 和 CF_RETURNS_NOT_RETAINED 这样的标注。

但是有一点例外,那就是对于非系统的 CF API (比如你自己写的或者是第三方的),因为并没有强制机制要求它们一定遵照 Cocoa 的命名规范,所以贸然进行自动内存管理是不可行的。如果你没有明确地使用上面的标注来指明内存管理的方式的话,将这些返回 CF 对象的 API 导入 Swift 时,它们的类型会被对对应为 Unmanaged。

这意味着在使用时我们需要手动进行内存管理,一般来说会使用得到的 Unmanaged 对象的 takeUnretainedValue 或者 takeRetainedValue 从中取出需要的 CF 对象,并同时处理引用计数。takeUnretainedValue 将保持原来的引用计数不变,在你明白你没有义务去释放原来的内存时,应该使用这个方法。而如果你需要释放得到的 CF 的对象的内存时,应该使用 takeRetainedValue 来让引用计数加一,然后在使用完后对原来的 Unmanaged 进行手动释放。为了能手动操作 Unmanaged 的引用计数,Unmanaged 中还提供了 retain,release 和 autorelease 这样的 "老朋友" 供我们使用。一般来说使用起来是这样的 (当然这些 API 都是我虚构的):

// CFGetSomething() -> Unmanaged<Something>
// CFCreateSomething() -> Unmanaged<Something>
// 两者都没有进行标注,Create 中进行了创建

let unmanaged = CFGetSomething()
let something = unmanaged.takeUnretainedValue()
// something 的类型是 Something,直接使用就可以了

let unmanaged = CFCreateSomething()
let something = unmanaged.takeRetainedValue()

// 使用 something

//  因为在取值时 retain 了,使用完成后进行 release
unmanaged.release()

切记,这些只有在没有标注的极少数情况下才会用到,如果你只是调用系统的 CF API,而不会去写自己的 CF API 的话,是没有必要关心这些的。

Previous深入理解哈希表Next开发者能拿到的标识符

Last updated 7 years ago