philm-iOS-wiki
  • 介绍
  • 网络层
    • 说明
  • UI
    • 说明
    • 在ios7以前使用ColorSpace的坑
    • UITableView偏移异常问题
    • drawRect时单独设置文字阴影无效
    • Xcode9下相册访问权限问题
    • 避免同时点击多个Button
    • scroll上的button延迟响应问题
    • uibutton触发边界事件
    • ios 11 上tableview 改动
    • YYImage 显示指定区域的图片
  • 数据持久化
    • 说明
  • 其它
    • 取消延迟执行之坑
    • NSString 转换 float 的精度问题
  • 每周阅读
    • 目录
    • 深入思考NSNotification
    • gitBook使用小助手
    • iOS App签名的原理
    • 响应链
    • iOS10跳转系统到设置页
    • SDWebImage下载高清图内存问题
    • iOS圆角避免离屏渲染
    • 常用的延时调用
    • iOS 神经网络
    • SDWebImage缓存策略
    • 3Dtouch
    • 为什么 Objective-C 对象存储在堆上而不是栈上
    • 深入浅出理解视频编码H264结构
    • CATextLayer学习
    • cocoaPods
    • 任意网站支持RSS
    • Metal简介
    • 动态更改icon
    • CAReplicatorLayer
    • 增加点击间隔
    • 勒索病毒当道的时代
    • iOS常用宏定义
    • Metal实现YUV转RGB渲染视频
    • 获取当前下载的app及下载进度
    • OpenGL ES 三种类型修饰 uniform attribute varying
    • 技术部门引入OKR
    • 基于runloop的线程保活、销毁与通信
    • 深入理解哈希表
    • TOLL-FREE BRIDGING 和 UNMANAGED
    • 开发者能拿到的标识符
    • Swift自定义LOG
    • 系统通知整理
    • iOS 中的 imageIO 与 image 解码
    • CGImageRef基本介绍及方法说明
    • Swift 3.0 语法
    • webview加载部分网页
    • 在CAAnimation中暂停动画
    • 把代码迁移到协调器上
    • ios11API更新整理
    • 非越狱iOS设备的远程控制实现原理
    • 关于本地化
    • swift命名空间
    • CoreML与coremltools体验
    • 力学动画
    • Swift 4官方文档中文版: The Basic(上)
    • swift 中的KVO用法
    • GPUImage的图像形变设计(简单形变部分)
    • iOS响应式架构
    • 移动端图片上传旋转、压缩的解决方案
    • AVFoundation使用指南AVAssert使用
    • 过渡动画
    • 谈谈 MVX 中的 Model
    • AVFoundation编程-AVPlayer使用
    • GPUImage的图像形变设计(复杂形变部分)
    • What's New in LLVM 9
    • ios的事件机制
    • GPUImage源码解读(一)
    • GPUImage源码解读(二)
    • iOS 启动优化
    • 模块化 Swift 中的状态
    • swift中的let和var背后的编程模式
    • Swift Runtime动态性分析
    • RAC下的响应式编程
    • GPUImage源码解读(三)
    • 如何准确判断webView是否加载完成
    • NSObject的+load和+initialize详解
    • ios8以后设置启动图
    • GPUImage源码解读(四)
    • Swift自动闭包
    • IOS11新特性
    • GPUImage源码解读(五)
    • 理解 OC 内部的消息调用、消息转发、类和对象
    • 修饰符
    • IOS 切面统计事件解耦
    • GPUImage源码解读(六)
    • CoreImage介绍
    • 影响Core Animation性能的原因
    • Instruments中的动画工具选项介绍
    • GPUImage源码解读(七)
    • Xcode 7新的特性Lightweight Generics 轻量级泛型与__kindof修饰符
    • GPUImage源码解读(八)
    • Core Image之自定 Filter
    • iOS通用链接
    • 谈nonatomic非线程安全问题
    • 深拷贝与浅拷贝
    • CIKernel 介绍
    • iOS11适配
    • GPUImage源码解读(九)
    • CVPixelBufferCreate使用的坑
    • ios一窥并发底层
    • ARKit进阶:物理世界
    • ARKit的工作原理及流程介绍
    • UI线程卡顿监控
    • FBKVOController使用
    • GPUImage源码解读(十)
    • WKWebView在ios11崩溃问题解决方法
    • 微信iOS SQLite源码优化实践
    • HEIF 和 HEVC 研究
    • 谈谈 iOS 中图片的解压缩
    • 提升 iOS 开发效率! Xcode 9 内置模拟器的9个技巧
    • ObjC和JavaScript的交互,在恰当的时机注入对象
    • iOS数据保护
    • iOS11中网络层的一些变化(Session707&709脱水版)
    • GPUImage源码解读(十一)
    • 一种避免 iOS 内存碎片的方法
    • pods的原理
    • GPUImage源码解读(十二)
    • GPUImage源码解读(十三)
    • iOS 11 Layout的新特性
    • iOS应用瘦身方法思路整理
    • GPUImage源码解读(十四)
    • CAEmitterLayer属性介绍
    • 浅析移动蜂窝网络的特点及其省电方案
    • 如何在 table view 中添加 3D Touch Peek & Pop 功能
    • iOS中锁的介绍与使用
    • NSLog效率低下的原因及尝试lldb断点打印Log
    • GPUImage源码解读(十五)
    • GPUImage源码解读(十六)
    • CADisplayLink
    • GPUImage源码解读(十七)
    • CADisplayLink
    • 老生常谈category增加属性的几种操作
    • 30行代码演示dispatch_once死锁
    • GPUImage源码解读(十八)
    • YYImage设计思路
    • GPUImage源码解读(十九)
    • 深入理解Tagged Pointer
    • iOS 11:WKWebView内容过滤规则详解
    • Swift语法对编译速度的影响
    • GPUImage源码解读(二十)
    • GPUImage源码解读(二十一)
    • iOS App间常用的五种通信方式
    • YYCache深入学习
    • 冲顶大会插件
    • iOS高性能图片架构与设计
    • YUV颜色编码解析
    • iOS传感器:App前后台切换后,获取敏感信息使用touch ID进行校验
    • GPUImage源码解读(二十二)
    • GPUImage源码解读(二十三)
    • 从零开始的机器学习 - Machine Learning(一)
    • 从零开始的机器学习 - Machine Learning(二)
    • GPUImage源码解读(二十四)
    • Objective-C消息转发机制
    • iOS 程序 main 函数之前发生了什么
    • MMKV--基于 mmap 的 iOS 高性能通用 key-value 组件
    • Objective-C 消息发送与转发机制原理
    • 谈Objective-C block的实现
    • GPUImage源码解读(二十五)
    • podfile语法
    • 轻量级低风险 iOS 热更新方案
    • 使用objection来模块化开发iOS项目
    • swift 中delegate的使用注意
    • 使用appledoc自动生成api文档
    • UITextChecker的使用
    • ARKit 如何给SCNNode贴Gif图片
    • Unity与iOS平台交互和原生插件开发
    • SceneKit编程珠玑
Powered by GitBook
On this page
  • 写在前面
  • 1.caffe:
  • 2.TensorFlow:
  • 3.mxnet:
  • 4.Torch:
  • 5.Theano:
  1. 每周阅读

iOS 神经网络

Previous常用的延时调用NextSDWebImage缓存策略

Last updated 7 years ago

写在前面

未完待续

关于视频分析或者图像处理过程如下: 1.首先要提取视频中的运动物体,常用算法有:帧差法,GMM,vibe等; 2.提取前景(运动物体)后对其进行跟踪,主要算法有:camshift,粒子滤波,TLD,压缩感知等; 3.对监控视频的去模糊,去雾,夜视增强等,可基于opencv来实现。 4.最后通过机器学习对视频进行分析。

下面着重介绍机器学习的分支:深度学习,也就是深度神经网络,是近来比较火热的领域。很多机器学习实现的功能很难用到商用中,比如人脸识别,传统的机器学习方法受光照,角度干扰太大,很难达到较好的识别率,深度学习在图像中的应用已经有很多了。这里介绍几个开源框架:

其他资料:

1.caffe:

c++,伯克利大学开发,支持公司facebook。

Caffe是非常高效的针对画面的深层学习框架。Caffe2是我们的第一个产业级深度学习平台,它可以在服务器CPU、GPU、iOS和安卓四种平台上运行,使用同一种代码。

2.TensorFlow:

支持公司:google。

基于图计算的框架,有一个限制,就是需要用户把所有的计算全部都表示成一张图来高效运行。

基于图计算的框架也提供了比如自动多卡并行调度,内存优化等便利条件。

Theano的一个优势在于代码是在计算时生成并编译的,所以理论上可以达到更高的速度(不需要运行时的polymorphism,而且如果写得好的话可以fuse kernel),但是因为是学术实现,没有花大精力在优化上面,所以实际速度并不占优势。另外现在大家都高度依赖于第三方库比如说cudnn,所以比较速度已经是上个时代的事情了,不必太在意。

另外吐槽一下,TensorFlow的分布式计算不是最快的,单机使用CPU作reduction,多机用基于socket的RPC而不是更快的RDMA,主要的原因是TF现有框架的抽象对于跨设备的通讯不是很友好(最近开始有一些重新设计的倾向,待考)。

在分布式上百度美研的解决方案要好得多,没有开源。

3.mxnet:

允许用户自由把图计算和过程计算混合起来, 并且可以对多步执行进行自动多卡调度, 使得程序在需要优化的部分可以非常优化,而必要的时候可以通过过程计算来实现一些更加灵活的操作, 并且所有的操作都可以自动并行(TF只能并行一个图的执行,但是不能并行像torch这样的多步执行的操作)。

MXNet的operator不仅仅局限于MShadow。MShadow只是提供了一个方便的模板,完全可以使用C, C++, CUDA等去实现。同时支持直接采用numpy来写各种operator。另外,目前的mxnet已经做到完全和Torch兼容,以调用所有Torch的Module和Operator ( mxnet/example/torch at master · dmlc/mxnet · GitHub ),所以Torch能做的MXNet就可以做。

4.Torch:

torch采取了支持用户把计算拆分成多步来做,用户可以直接利用lua来选择下一步执行什么。用户可以比较简单地对计算进行模块分割,并且根据比如输入长度的不同来直接动态改变需要运行哪一个步骤。

Torch为代表的过程式计算更加灵活。

TF由G的优秀工程师设计,更加注重性能和优化。Torch本身是researcher设计的,更加注重灵活性。

5.Theano:

TensorFlow和Theano,都是基于Python的符号运算库,TensorFlow显然支持更好,Google也比高校有更多的人力投入。Theano的主要开发者现在都在Google,可以想见将来的工程资源上也会更偏向于TF一些。

开源框架。 支持公司:华为、阿里部分团队。

阅读原文
AI从业者该如何选择深度学习框架
caffe开发过程中使用了哪些工具
DL框架的未来发展TensorFlow/MXNet/Torch, 选哪个