philm-iOS-wiki
  • 介绍
  • 网络层
    • 说明
  • UI
    • 说明
    • 在ios7以前使用ColorSpace的坑
    • UITableView偏移异常问题
    • drawRect时单独设置文字阴影无效
    • Xcode9下相册访问权限问题
    • 避免同时点击多个Button
    • scroll上的button延迟响应问题
    • uibutton触发边界事件
    • ios 11 上tableview 改动
    • YYImage 显示指定区域的图片
  • 数据持久化
    • 说明
  • 其它
    • 取消延迟执行之坑
    • NSString 转换 float 的精度问题
  • 每周阅读
    • 目录
    • 深入思考NSNotification
    • gitBook使用小助手
    • iOS App签名的原理
    • 响应链
    • iOS10跳转系统到设置页
    • SDWebImage下载高清图内存问题
    • iOS圆角避免离屏渲染
    • 常用的延时调用
    • iOS 神经网络
    • SDWebImage缓存策略
    • 3Dtouch
    • 为什么 Objective-C 对象存储在堆上而不是栈上
    • 深入浅出理解视频编码H264结构
    • CATextLayer学习
    • cocoaPods
    • 任意网站支持RSS
    • Metal简介
    • 动态更改icon
    • CAReplicatorLayer
    • 增加点击间隔
    • 勒索病毒当道的时代
    • iOS常用宏定义
    • Metal实现YUV转RGB渲染视频
    • 获取当前下载的app及下载进度
    • OpenGL ES 三种类型修饰 uniform attribute varying
    • 技术部门引入OKR
    • 基于runloop的线程保活、销毁与通信
    • 深入理解哈希表
    • TOLL-FREE BRIDGING 和 UNMANAGED
    • 开发者能拿到的标识符
    • Swift自定义LOG
    • 系统通知整理
    • iOS 中的 imageIO 与 image 解码
    • CGImageRef基本介绍及方法说明
    • Swift 3.0 语法
    • webview加载部分网页
    • 在CAAnimation中暂停动画
    • 把代码迁移到协调器上
    • ios11API更新整理
    • 非越狱iOS设备的远程控制实现原理
    • 关于本地化
    • swift命名空间
    • CoreML与coremltools体验
    • 力学动画
    • Swift 4官方文档中文版: The Basic(上)
    • swift 中的KVO用法
    • GPUImage的图像形变设计(简单形变部分)
    • iOS响应式架构
    • 移动端图片上传旋转、压缩的解决方案
    • AVFoundation使用指南AVAssert使用
    • 过渡动画
    • 谈谈 MVX 中的 Model
    • AVFoundation编程-AVPlayer使用
    • GPUImage的图像形变设计(复杂形变部分)
    • What's New in LLVM 9
    • ios的事件机制
    • GPUImage源码解读(一)
    • GPUImage源码解读(二)
    • iOS 启动优化
    • 模块化 Swift 中的状态
    • swift中的let和var背后的编程模式
    • Swift Runtime动态性分析
    • RAC下的响应式编程
    • GPUImage源码解读(三)
    • 如何准确判断webView是否加载完成
    • NSObject的+load和+initialize详解
    • ios8以后设置启动图
    • GPUImage源码解读(四)
    • Swift自动闭包
    • IOS11新特性
    • GPUImage源码解读(五)
    • 理解 OC 内部的消息调用、消息转发、类和对象
    • 修饰符
    • IOS 切面统计事件解耦
    • GPUImage源码解读(六)
    • CoreImage介绍
    • 影响Core Animation性能的原因
    • Instruments中的动画工具选项介绍
    • GPUImage源码解读(七)
    • Xcode 7新的特性Lightweight Generics 轻量级泛型与__kindof修饰符
    • GPUImage源码解读(八)
    • Core Image之自定 Filter
    • iOS通用链接
    • 谈nonatomic非线程安全问题
    • 深拷贝与浅拷贝
    • CIKernel 介绍
    • iOS11适配
    • GPUImage源码解读(九)
    • CVPixelBufferCreate使用的坑
    • ios一窥并发底层
    • ARKit进阶:物理世界
    • ARKit的工作原理及流程介绍
    • UI线程卡顿监控
    • FBKVOController使用
    • GPUImage源码解读(十)
    • WKWebView在ios11崩溃问题解决方法
    • 微信iOS SQLite源码优化实践
    • HEIF 和 HEVC 研究
    • 谈谈 iOS 中图片的解压缩
    • 提升 iOS 开发效率! Xcode 9 内置模拟器的9个技巧
    • ObjC和JavaScript的交互,在恰当的时机注入对象
    • iOS数据保护
    • iOS11中网络层的一些变化(Session707&709脱水版)
    • GPUImage源码解读(十一)
    • 一种避免 iOS 内存碎片的方法
    • pods的原理
    • GPUImage源码解读(十二)
    • GPUImage源码解读(十三)
    • iOS 11 Layout的新特性
    • iOS应用瘦身方法思路整理
    • GPUImage源码解读(十四)
    • CAEmitterLayer属性介绍
    • 浅析移动蜂窝网络的特点及其省电方案
    • 如何在 table view 中添加 3D Touch Peek & Pop 功能
    • iOS中锁的介绍与使用
    • NSLog效率低下的原因及尝试lldb断点打印Log
    • GPUImage源码解读(十五)
    • GPUImage源码解读(十六)
    • CADisplayLink
    • GPUImage源码解读(十七)
    • CADisplayLink
    • 老生常谈category增加属性的几种操作
    • 30行代码演示dispatch_once死锁
    • GPUImage源码解读(十八)
    • YYImage设计思路
    • GPUImage源码解读(十九)
    • 深入理解Tagged Pointer
    • iOS 11:WKWebView内容过滤规则详解
    • Swift语法对编译速度的影响
    • GPUImage源码解读(二十)
    • GPUImage源码解读(二十一)
    • iOS App间常用的五种通信方式
    • YYCache深入学习
    • 冲顶大会插件
    • iOS高性能图片架构与设计
    • YUV颜色编码解析
    • iOS传感器:App前后台切换后,获取敏感信息使用touch ID进行校验
    • GPUImage源码解读(二十二)
    • GPUImage源码解读(二十三)
    • 从零开始的机器学习 - Machine Learning(一)
    • 从零开始的机器学习 - Machine Learning(二)
    • GPUImage源码解读(二十四)
    • Objective-C消息转发机制
    • iOS 程序 main 函数之前发生了什么
    • MMKV--基于 mmap 的 iOS 高性能通用 key-value 组件
    • Objective-C 消息发送与转发机制原理
    • 谈Objective-C block的实现
    • GPUImage源码解读(二十五)
    • podfile语法
    • 轻量级低风险 iOS 热更新方案
    • 使用objection来模块化开发iOS项目
    • swift 中delegate的使用注意
    • 使用appledoc自动生成api文档
    • UITextChecker的使用
    • ARKit 如何给SCNNode贴Gif图片
    • Unity与iOS平台交互和原生插件开发
    • SceneKit编程珠玑
Powered by GitBook
On this page
  • CADisplayLink
  • 属性和方法
  • CADisplayLink 与 NSTimer 有什么不同
  • tips
  1. 每周阅读

CADisplayLink

CADisplayLink

CADisplayLink是一个能让我们以和屏幕刷新率相同的频率将内容画到屏幕上的定时器。我们在应用中创建一个新的 CADisplayLink 对象,把它添加到一个runloop中,并给它提供一个 target 和selector 在屏幕刷新的时候调用。

一但 CADisplayLink 以特定的模式注册到runloop之后,每当屏幕需要刷新的时候,runloop就会调用CADisplayLink绑定的target上的selector,这时target可以读到 CADisplayLink 的每次调用的时间戳,用来准备下一帧显示需要的数据。例如一个视频应用使用时间戳来计算下一帧要显示的视频数据。在UI做动画的过程中,需要通过时间戳来计算UI对象在动画的下一帧要更新的大小等等。 在添加进runloop的时候我们应该选用高一些的优先级,来保证动画的平滑。可以设想一下,我们在动画的过程中,runloop被添加进来了一个高优先级的任务,那么,下一次的调用就会被暂停转而先去执行高优先级的任务,然后在接着执行CADisplayLink的调用,从而造成动画过程的卡顿,使动画不流畅。

属性和方法

方法:

//生成实例
+(CADisplayLink *)displayLinkWithTarget:(id)target selector:(SEL)sel;

//将实例加入到一个选定的runloop中,事件就能被触发了。
-(void)addToRunLoop:(NSRunLoop *)runloop forMode:(NSString *)mode;

//从某个runloop中移除当前实例
-(void)removeFromRunLoop:(NSRunLoop *)runloop forMode:(NSString *)mode;

//计时器销毁
-(void)invalidate;

属性:

  • timestamp,获取上一次selector被执行的时间戳。这个属性是一个只读属性,而且你要记住的是只有当selector被执行过一次之后这个值才会被取到有效值。这个属性同上是用来比较当前图层时间与上一次selector执行时间只差,从而来计算本次UI应该发生的改变的进度(例如视图做移动效果)。

  • duration,获取当前设备的屏幕刷新时间间隔。同timestamp一样,他也是个只读属性,并且也需要selector触发一次才可以取值。值的一提的是,当前iOS设备的刷新频率都是60HZ。也就是说每16.7ms刷新一次。作用也与timestamp相同,都可以用于辅助计算。它只是个大概的时间,如果CPU过于繁忙,duration的值是会浮动的.这样就没法保证以相同的频率执行屏幕的绘制操作,这样会跳过几次调用回调方法的机会。

  • paused,控制计时器暂停与恢复的属性。设置为YES的时候会暂停事件的触发。想结束一个CADisplayLink的时候,应该调用 invalidate

  • frameInterval,事件触发间隔。是指两次selector触发之间间隔几次屏幕刷新,默认值为1,即每帧都调用一次selector,这个也可以间接用来控制动画速度。

CADisplayLink 与 NSTimer 有什么不同

iOS设备的屏幕刷新频率是固定的,CADisplayLink在正常情况下会在每次刷新结束都被调用,精确度相当高。 NSTimer的精确度就显得低了点,比如NSTimer的触发时间到的时候,runloop如果在阻塞状态,触发时间就会推迟到下一个runloop周期。并且 NSTimer新增了tolerance属性,让用户可以设置可以容忍的触发的时间的延迟范围。 CADisplayLink使用场合相对专一,适合做UI的不停重绘,比如自定义动画引擎或者视频播放的渲染。NSTimer的使用范围要广泛的多,各种需要单次或者循环定时处理的任务都可以使用。在UI相关的动画或者显示内容使用 CADisplayLink比起用NSTimer的好处就是我们不需要在格外关心屏幕的刷新频率了,因为它本身就是跟屏幕刷新同步的。

tips

  • 两次selector触发的时间间隔是time = frameInterVal * duration。selector执行所需要的时间一定要小于其触发间隔,否则会造成掉帧情况。 通常来讲iOS设备的刷新频率事60HZ也就是每秒60次。那么每一次刷新的时间就是1/60秒 大概16.7毫秒。当我们的frameInterval值为1的时候我们需要保证的是 CADisplayLink调用的`target`的函数计算时间不应该大于 16.7否则就会出现严重的丢帧现象。

  • CADisplayLink 不能被继承。

优势:

依托于设备屏幕刷新频率触发事件,所以其触发时间上是最准确的。也是最适合做UI不断刷新的事件,过渡相对流畅,无卡顿感。

缺点:

由于依托于屏幕刷新频率,若果CPU不堪重负而影响了屏幕刷新,那么触发事件也会受到相应影响。 selector触发的时间间隔只能是duration的整倍数。 selector事件如果大于其触发间隔就会造成掉帧现象。

PreviousGPUImage源码解读(十六)NextGPUImage源码解读(十七)

Last updated 7 years ago