philm-iOS-wiki
  • 介绍
  • 网络层
    • 说明
  • UI
    • 说明
    • 在ios7以前使用ColorSpace的坑
    • UITableView偏移异常问题
    • drawRect时单独设置文字阴影无效
    • Xcode9下相册访问权限问题
    • 避免同时点击多个Button
    • scroll上的button延迟响应问题
    • uibutton触发边界事件
    • ios 11 上tableview 改动
    • YYImage 显示指定区域的图片
  • 数据持久化
    • 说明
  • 其它
    • 取消延迟执行之坑
    • NSString 转换 float 的精度问题
  • 每周阅读
    • 目录
    • 深入思考NSNotification
    • gitBook使用小助手
    • iOS App签名的原理
    • 响应链
    • iOS10跳转系统到设置页
    • SDWebImage下载高清图内存问题
    • iOS圆角避免离屏渲染
    • 常用的延时调用
    • iOS 神经网络
    • SDWebImage缓存策略
    • 3Dtouch
    • 为什么 Objective-C 对象存储在堆上而不是栈上
    • 深入浅出理解视频编码H264结构
    • CATextLayer学习
    • cocoaPods
    • 任意网站支持RSS
    • Metal简介
    • 动态更改icon
    • CAReplicatorLayer
    • 增加点击间隔
    • 勒索病毒当道的时代
    • iOS常用宏定义
    • Metal实现YUV转RGB渲染视频
    • 获取当前下载的app及下载进度
    • OpenGL ES 三种类型修饰 uniform attribute varying
    • 技术部门引入OKR
    • 基于runloop的线程保活、销毁与通信
    • 深入理解哈希表
    • TOLL-FREE BRIDGING 和 UNMANAGED
    • 开发者能拿到的标识符
    • Swift自定义LOG
    • 系统通知整理
    • iOS 中的 imageIO 与 image 解码
    • CGImageRef基本介绍及方法说明
    • Swift 3.0 语法
    • webview加载部分网页
    • 在CAAnimation中暂停动画
    • 把代码迁移到协调器上
    • ios11API更新整理
    • 非越狱iOS设备的远程控制实现原理
    • 关于本地化
    • swift命名空间
    • CoreML与coremltools体验
    • 力学动画
    • Swift 4官方文档中文版: The Basic(上)
    • swift 中的KVO用法
    • GPUImage的图像形变设计(简单形变部分)
    • iOS响应式架构
    • 移动端图片上传旋转、压缩的解决方案
    • AVFoundation使用指南AVAssert使用
    • 过渡动画
    • 谈谈 MVX 中的 Model
    • AVFoundation编程-AVPlayer使用
    • GPUImage的图像形变设计(复杂形变部分)
    • What's New in LLVM 9
    • ios的事件机制
    • GPUImage源码解读(一)
    • GPUImage源码解读(二)
    • iOS 启动优化
    • 模块化 Swift 中的状态
    • swift中的let和var背后的编程模式
    • Swift Runtime动态性分析
    • RAC下的响应式编程
    • GPUImage源码解读(三)
    • 如何准确判断webView是否加载完成
    • NSObject的+load和+initialize详解
    • ios8以后设置启动图
    • GPUImage源码解读(四)
    • Swift自动闭包
    • IOS11新特性
    • GPUImage源码解读(五)
    • 理解 OC 内部的消息调用、消息转发、类和对象
    • 修饰符
    • IOS 切面统计事件解耦
    • GPUImage源码解读(六)
    • CoreImage介绍
    • 影响Core Animation性能的原因
    • Instruments中的动画工具选项介绍
    • GPUImage源码解读(七)
    • Xcode 7新的特性Lightweight Generics 轻量级泛型与__kindof修饰符
    • GPUImage源码解读(八)
    • Core Image之自定 Filter
    • iOS通用链接
    • 谈nonatomic非线程安全问题
    • 深拷贝与浅拷贝
    • CIKernel 介绍
    • iOS11适配
    • GPUImage源码解读(九)
    • CVPixelBufferCreate使用的坑
    • ios一窥并发底层
    • ARKit进阶:物理世界
    • ARKit的工作原理及流程介绍
    • UI线程卡顿监控
    • FBKVOController使用
    • GPUImage源码解读(十)
    • WKWebView在ios11崩溃问题解决方法
    • 微信iOS SQLite源码优化实践
    • HEIF 和 HEVC 研究
    • 谈谈 iOS 中图片的解压缩
    • 提升 iOS 开发效率! Xcode 9 内置模拟器的9个技巧
    • ObjC和JavaScript的交互,在恰当的时机注入对象
    • iOS数据保护
    • iOS11中网络层的一些变化(Session707&709脱水版)
    • GPUImage源码解读(十一)
    • 一种避免 iOS 内存碎片的方法
    • pods的原理
    • GPUImage源码解读(十二)
    • GPUImage源码解读(十三)
    • iOS 11 Layout的新特性
    • iOS应用瘦身方法思路整理
    • GPUImage源码解读(十四)
    • CAEmitterLayer属性介绍
    • 浅析移动蜂窝网络的特点及其省电方案
    • 如何在 table view 中添加 3D Touch Peek & Pop 功能
    • iOS中锁的介绍与使用
    • NSLog效率低下的原因及尝试lldb断点打印Log
    • GPUImage源码解读(十五)
    • GPUImage源码解读(十六)
    • CADisplayLink
    • GPUImage源码解读(十七)
    • CADisplayLink
    • 老生常谈category增加属性的几种操作
    • 30行代码演示dispatch_once死锁
    • GPUImage源码解读(十八)
    • YYImage设计思路
    • GPUImage源码解读(十九)
    • 深入理解Tagged Pointer
    • iOS 11:WKWebView内容过滤规则详解
    • Swift语法对编译速度的影响
    • GPUImage源码解读(二十)
    • GPUImage源码解读(二十一)
    • iOS App间常用的五种通信方式
    • YYCache深入学习
    • 冲顶大会插件
    • iOS高性能图片架构与设计
    • YUV颜色编码解析
    • iOS传感器:App前后台切换后,获取敏感信息使用touch ID进行校验
    • GPUImage源码解读(二十二)
    • GPUImage源码解读(二十三)
    • 从零开始的机器学习 - Machine Learning(一)
    • 从零开始的机器学习 - Machine Learning(二)
    • GPUImage源码解读(二十四)
    • Objective-C消息转发机制
    • iOS 程序 main 函数之前发生了什么
    • MMKV--基于 mmap 的 iOS 高性能通用 key-value 组件
    • Objective-C 消息发送与转发机制原理
    • 谈Objective-C block的实现
    • GPUImage源码解读(二十五)
    • podfile语法
    • 轻量级低风险 iOS 热更新方案
    • 使用objection来模块化开发iOS项目
    • swift 中delegate的使用注意
    • 使用appledoc自动生成api文档
    • UITextChecker的使用
    • ARKit 如何给SCNNode贴Gif图片
    • Unity与iOS平台交互和原生插件开发
    • SceneKit编程珠玑
Powered by GitBook
On this page
  • NSTimer
  • NSObject的 performSelector
  • GCD
  • # 这些是比较常用的,一般使用场景下的也足够了,如果需要更精确的,系统有给提供误差更小的高精度定时器
  1. 每周阅读

常用的延时调用

  • iOS中的几种常用定时器,是否严格按照设定的时间间隔按时执行,支持的最小时间间隔

NSTimer

  • 可以精确到50-100毫秒. 能满足对间隔要求不严格、对精确度不敏感的需求

    • NSTimer理论上最小精度为 0.1 毫秒。不过由于受 Runloop 的影响,会有 50 ~ 100 毫秒的误差,所以,实际精度可以认为是 0.1 秒。

    • 不可靠,NSTimer不是绝对准确的,而且中间耗时或阻塞错过下一个点,那么下一个点就pass过去了.timer其所在的RunLoop会定时检测是否可以触发NSTimer的事件.但由于iOS有多个RunLoop的运行模式,如果被切到另一个runloop, NSTimer就不会被触发.每个RunLoop的循环间隔也无法保证,当某个任务耗时比较久,RunLoop的下一个消息处理就只能顺延,导致NSTimer的时间已经到达,但Runloop却无法及时触发 NSTimer,导致该时间点的回调被错过。

  • 创建方法:

+ (NSTimer *)timerWithTimeInterval:(NSTimeInterval)ti invocation:(NSInvocation *)invocation repeats:(BOOL)yesOrNo;

+ (NSTimer *)scheduledTimerWithTimeInterval:(NSTimeInterval)ti invocation:(NSInvocation *)invocation repeats:(BOOL)yesOrNo;

+ (NSTimer *)timerWithTimeInterval:(NSTimeInterval)ti target:(id)aTarget selector:(SEL)aSelector userInfo:(id)userInfo repeats:(BOOL)yesOrNo;

+ (NSTimer *)scheduledTimerWithTimeInterval:(NSTimeInterval)ti target:(id)aTarget selector:(SEL)aSelector userInfo:(id)userInfo repeats:(BOOL)yesOrNo;

- (instancetype)initWithFireDate:(NSDate *)date interval:(NSTimeInterval)ti target:(id)t selector:(SEL)s userInfo:(id)ui repeats:(BOOL)rep;
  • 除了参数区别之外.这五种初始化方法的不同之处在于:

    • timerWith这两个类方法以及init方法,只是创建了定时器,必须手动加入到当前runloop中去.如果不手动加入主循环池中,将不会循环执行。并且如果不手动调用fire,则定时器不会启动。

    • scheduled这两个类方法是创建一个定时器,并加入到当前运行循环中.不需要手动调用fire,会自动执行。

  • 使用 [timer fire];可以触发定时器.

    • fire并不是启动一个定时器,只是提前触发而已.

    • 在重复执行(repeat = YES)的定时器中调用此方法后立即触发该定时器,但不会中断其之前的执行计划;

    • 在不重复执行(repeat = NO)的定时器中调用此方法,立即触发后,就会使这个定时器失效。

  • 销毁定时器,使用 [timer invalidate]; 这是唯一将定时器从循环池中移除的方法.

NSObject的 performSelector

  • NSObject对NSTimer封装后提供的一个比较简单的延时方法.当调用NSObject的performSelecter:afterDelay:后,实际上其内部会创建一个Timer并添加到当前线程的RunLoop中.所以这种方法的精确度和可靠性同timer.

  • 使用方法

- (void)performSelector:(SEL)aSelector withObject:(nullable id)anArgument afterDelay:(NSTimeInterval)delay inModes:(NSArray<NSRunLoopMode> *)modes;
- (void)performSelector:(SEL)aSelector withObject:(nullable id)anArgument afterDelay:(NSTimeInterval)delay;
  • cancle方法

+ (void)cancelPreviousPerformRequestsWithTarget:(id)aTarget selector:(SEL)aSelector object:(nullable id)anArgument;

GCD

  • 最小精度为纳秒,误差在50毫秒以内.

  • 比较常用的 dispatch_after方法并没有直接的cancel方法

dispatch_time_t delayTime = dispatch_time(DISPATCH_TIME_NOW, (int64_t)(2.0/*延迟执行时间*/ * NSEC_PER_SEC));

dispatch_after(delayTime, dispatch_get_main_queue(), ^{

});
  • 更加精确的定时器 消耗性能

dispatch_source_t timer = dispatch_source_create(DISPATCH_SOURCE_TYPE_TIMER, 0, 0, dispatch_get_main_queue()); //创建一个GCD的定时器 dispatch_source_t本质上是OC类,

dispatch_time_t start = dispatch_time(DISPATCH_TIME_NOW,3.0 *NSEC_PER_SEC); //设置开始时间
  uint64_t delayTime = 1.0 * NSEC_PER_SEC; //设置定时器工作的间隔时间

dispatch_source_set_timer(timer, start, delayTime, 0 * NSEC_PER_SEC);
   /*
    第一个参数:要给哪个定时器设置
    第二个参数:定时器的开始时间DISPATCH_TIME_NOW表示从当前开始
    第三个参数:定时器调用方法的间隔时间
    第四个参数:定时器的精准度,如果传0则表示采用最精准的方式计算,如果传大于0的数值,则表示该定时切换i可以接收该值范围内的误差,通常传0
    该参数的意义:可以适当的提高程序的性能
    注意点:GCD定时器中的时间以纳秒为单位
    */

//设置定时器开启后回调的方法
dispatch_source_set_event_handler(timer, ^{

    });
//执行定时器
dispatch_resume(timer);
  • 取消方法

dispatch_source_cancel(_recordTimer);

# 这些是比较常用的,一般使用场景下的也足够了,如果需要更精确的,系统有给提供误差更小的高精度定时器

  • 详见

PreviousiOS圆角避免离屏渲染NextiOS 神经网络

Last updated 7 years ago

https://developer.apple.com/library/content/technotes/tn2169/_index.html